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Abstract- In today’s digital world, where most communication occurs on platforms like Twitter, Facebook, and 

WhatsApp, understanding emotions from user-generated content has become essential for businesses, researchers, 

and decision-makers. Detecting emotions in code mixed presents unique challenges due to its informal structure, 

frequent language switching, and lack of standardized grammar. This paper proposes a novel deep learning 

framework for emotion detection in real-world Hinglish social media texts, combining XLM-RoBERTa embeddings 

with a BiLSTM-multi-head attention architecture. Unlike conventional methods that utilize only token-level features 

from the final layer of transformer models, our approach dynamically learns optimal combinations of hidden states 

from XLM-R, refining feature representation to better align with emotional cues. The BiLSTM network captures 

sequential context, while multi-head attention highlights emotionally significant tokens across mixed-language 

expressions. Layer normalization and dropout mechanisms improve generalization, and hyperparameter tuning 

ensures robust performance. Experimental results on benchmark Hinglish emotion datasets demonstrate the 

effectiveness of the proposed approach, achieving an F1 score of 87.50%, outperforming standard transformer-based 

baselines. We also present ablation studies validating the contribution of each architectural component. The 

proposed model offers a domain-aware solution to emotion classification in low-resource, multilingual NLP settings. 

Keywords- Emotion, Sentiment Analysis, Machine Learning, Word Embeddings, Code Mixed, Hinglish. 

Abbreviation- 

AI  Artificial Intelligence 

NLP  Natural Language Processing 

SA  Sentiment Analysis 

XLM-R  Cross-lingual Language Model - RoBERTa 

BiLSTM Bidirectional Long Short-Term Memory 

HLSTM  Hierarchical Long Short-Term Memory 

ML  Machine Learning 

XGBoost eXtreme Gradient Boosting 

SVC  Support Vector Classifier 

SVM  Support Vector Machine 

RBF  Radial Basis Function 

MLP  Multi-Layer Perceptron 

TF-IDF  Term Frequency-Inverse Document Frequency 

mBERT  Multilingual Bidirectional Encoder Representations from Transformers 

GPT-4  Generative Pre-trained Transformer 4 

MURIL  Multilingual Representations for Indian Languages 

ADASYN Adaptive Synthetic Sampling 

mT5  Multilingual Text-to-Text Transfer Transformer 

HEP   Hinglish Emoji Prediction  

HAN  Hierarchical Attention Network 

RLHF   Reinforcement Learning from Human Feedback 

LoRA   Low-Rank Adaptation 
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1 Introduction 
 

Artificial Intelligence is a field in computer science focused on creating systems that can perform tasks 

typically requiring human thinking, such as learning, reasoning, and making decisions. A key part of AI is 

Natural Language Processing, which enables computers to understand and use human language effectively. 

NLP works on two main goals: understanding human communication and generating appropriate responses in 

human language. Understanding involves figuring out the meaning and intent behind words, while generating 

involves producing clear and relevant language. Understanding human language is more challenging due to 

its unclear nature. NLP is used in various applications like Speech Recognition [1], Document Summarization [2], 

Question Answering [3], Speech Synthesis [4], Machine Translation [5], Recommendation Systems [6] and more. 

Within NLP, sentiment analysis and text emotion detection are crucial for understanding human emotions in written 

content. Sentiment analysis [7] determines the overall sentiment (positive, negative, or neutral) of a text, while text 

emotion detection identifies specific emotions like happiness, sadness, anger, fear, disgust, surprise, or sometimes 

no emotion at all. Social media has become a powerful platform for expressing and sharing emotions, connecting 

people across the globe through text, images, and videos. These days, people prefer using Twitter and Facebook for 

news and updates instead of watching TV or reading newspapers. On Twitter, users share their views, feedback, and 

complaints about products. They also tweet about their favorite celebrities, athletes, and politicians. With the rise of 

online interactions, people often mix languages called code-mixing, where they switch between two or more 

languages in the same conversation or sentence. For example, "Mujhe coffee pasand hai, but only with sugar," 

where Hindi and English are mixed. 

 

The combination of Hindi and English, commonly referred to as 'Hinglish,' is widely used on digital platforms, 

creating a need for systems that can effectively handle this unique style of communication [8]. While this linguistic 

flexibility facilitates seamless communication, it presents unique challenges for NLP tasks, especially emotion 

classification. One of the main difficulties in handling code-mixed Hinglish text is its complex linguistic nature. 

Hinglish often has irregular sentence structures, with Hindi words written in Roman script mixed with English 

words, leading to non-standard representation. For example, the Hindi word "mujhe" can appear in various 

Romanized spellings like "mujhe," "muje," or "mujhey," all of which mean "me." Such spelling variations 

add to the ambiguity and complicate the processes of tokenization and preprocessing . Another challenge is the 

seamless integration of grammar rules and idiomatic expressions from both languages. Words and phrases often 

carry contextual and cultural nuances that conventional NLP models struggle to interpret. Additionally, Hinglish text 

frequently incorporates informal language, slang, abbreviations, and emojis, all of which add significant complexity 

to semantic analysis. 

 

Models like XLMR [9]and mBERT [10] which are based on transformers, have proven effective for handling 

multilingual and code-mixed text. They learn from large datasets and understand the complexities of different 

languages and word relationships, making them suitable for multilingual tasks. Additionally, they can handle 

the ambiguity and inconsistencies found in code-mixed texts, providing better generalization compared to traditional 

models. While transformer-based models excel at capturing semantic meanings, they might not fully capture 

sequential dependencies in the text, which is crucial for tasks like emotion classification. BiLSTM networks are 

adept at understanding long-term dependencies and context by analyzing the text in both directions, forward and 

backward [11]. Additionally, multi-head attention enables the model to concentrate on various sections of the input, 

making sure it highlights important features and relationships within the text, which is crucial for accurate emotion 

detection [12]. Previous models often show low accuracy because they do not effectively address the complexities 

introduced by code-mixed languages, which involve the blending of multiple languages. These models also struggle 

to capture the nuanced emotional expressions embedded in the text. Moreover, the diverse range of expressions and 

cultural contexts in code-mixed data further complicates emotion classification. The use of informal language, slang, 

and region-specific idioms adds additional layers of difficulty, making it challenging for traditional models to 

accurately identify emotions, which shows the need for more advanced models capable of handling the unique 

characteristics of code-mixed language data. In this paper, we propose a Weighted XLM-R Embeddings layer to 

compute a weighted sum of hidden layers from XLM-R for improved feature extraction. The BiLSTM-Attention 

model utilizes these embeddings, integrating a BiLSTM network with multi-head attention to enhance model 

performance. By employing this novel approach, we observe substantial enhancements in performance metrics. 

 

Motivation- While our approach builds on established transformer and sequence modeling frameworks, we 

introduce several domain-aware enhancements specifically designed for code-mixed Hinglish text. These include: 
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• A layer-weighted aggregation mechanism that dynamically identifies and combines the most informative 

hidden states from XLM-RoBERTa; 

• A multi-head attention layer over BiLSTM outputs, enabling the model to focus on emotionally significant 

tokens across language boundaries; 

• A custom preprocessing pipeline targeting transliterated Hindi, emojis, and informal expressions common 

in real-world social media text. 

 

Emotion detection from code-mixed Hinglish text has many applications, and several researchers are working in this 

domain. This paper is organized to explore research in the field of emotion detection from code-mixed Hinglish text. 

The paper is structured as: Section 2 provides a literature review, discussing emotion detection in code-mixed data 

using machine learning and deep learning approaches. Section 3 introduces recent models developed for this task, 

while Section 4 presents the proposed model. Section 5 details the experimental setup, followed by Section 6, which 

discusses the results. Finally, Section 7 concludes the paper with a summary of findings and directions for future 

work. 

 

2 Literature Review 
 

Emotion detection in code-mixed languages like Hinglish has gained attention as social media users increasingly 

mix languages. The challenge lies in the linguistic diversity and informal style of online text. Researchers have 

proposed various approaches using machine learning and deep learning to improve accuracy in detecting emotions. 

This review examines various studies on emotion detection in code-mixed Hinglish text, employing diverse models. 

 

2.1 Emotion Detection Based on Machine Learning Methods 

 

Machine learning models, such as support vector machine, naive bayes, random forest, and decision tree, are 

important tools for detecting emotions in text, including code-mixed Hinglish data. These models work well by 

finding patterns in the text using features like n-grams, TF-IDF, sentiment lexicons, and part-of-speech tagging. 

They have been used for tasks like sentiment and emotion analysis and are favored for their efficiency and good 

performance with smaller datasets. ML models require manual feature engineering, where researchers turn language 

insights into input features to help the models understand and classify emotions accurately. Even with newer 

techniques available, machine learning models are still relevant, especially when computer resources are limited or 

when simpler, easier-to-understand models are needed. Additionally, combining machine learning with other 

techniques can further improve the accuracy of emotion detection in multilingual and code-mixed text, highlighting 

the continued importance of machine learning in this area.  

 

Here, we provide an overview of the research conducted by various researchers on code-mixed text using ML 

techniques. 

 

Sultana et al. [13] focuses on SA in code-mixed Bangla-English content, addressing the challenge of limited 

annotated data for low-resource languages like Bangla. The study aims to collect code-mixed Bangla-English data 

and expand it using data augmentation techniques. The researchers compare four ML algorithms: support vector 

machine, decision tree, stochastic gradient descent, and random forest, using TF-IDF for feature extraction. Among 

these, random forest with TF-IDF achieved the highest accuracy of 83%, outperforming the other methods. This 

work contributes to improving SA capabilities for code-mixed content in low-resource language scenarios, 

particularly for Bangla-English text found on social media and online platforms. Rajalakshmi et al. [14] investigated 

SA in code-mixed Hinglish tweets, addressing the unique linguistic challenges that arise when multiple languages 

blend at sentence and word levels. Their approach involved various ML algorithms, such as decision tree, linear 

SVC, logistic regression, naive bayes, and XGBoost. To tackle specific issues like phonetic typing and multilingual 

words, they developed an ensemble-based classifier. Extensive experimentation revealed XGBoost as the top 

performing method, achieving an F1-score of 83.10% and outperforming previous approaches on the Hinglish 

dataset. This work represents a notable contribution to SA in code-mixed contexts, with potential to enhance text 

understanding and classification across multilingual settings. Singh et al. [15] explores the application of 

unsupervised cross-lingual embeddings to understand code-mixed social media text, focusing on SA of Hinglish 

Tweets (a combination of English and transliterated Hindi). The study compares baseline models using monolingual 

embeddings with two cross-lingual embedding approaches: a supervised classifier and a transfer learning method. 

YMER || ISSN : 0044-0477

VOLUME 25 : ISSUE 02 (Feb) - 2026

http://ymerdigital.com

Page No:36

https://scholar.google.com/citations?user=iR-crJYAAAAJ&hl=en&oi=sra


The findings reveal that cross-lingual embeddings outperform monolingual baselines, achieving an F1-score of 

0.635 compared to 0.616, without requiring parallel data. Moreover, the cross-lingual approach proves effective in 

distant supervision scenarios, with transfer learning experiments yielding an F1-score of 0.556, nearly matching 

supervised settings. These results highlight the robustness and potential of cross-lingual embeddings in addressing 

code-mixed text understanding challenges. Hossain et al. [16] focuses on SA of code-mixed Bangla-English social 

media comments that incorporate emojis, reflecting the complexity of modern online communication. The study 

preprocessed a dataset of 2055 Facebook comments, extracted features using TF-IDF vectorizer and 

CountVectorizer, and applied nine ML algorithms for analysis. The support vector classifier emerged as the most 

effective model, achieving 85.7% accuracy and an 85.0% F1 score. These results underscore the importance of 

including emoji-based features in SA of code-mixed data. The preprocessing phase involved cleaning the data and 

converting emojis to unicode short names, prepare ng the diverse dataset for comprehensive analysis. 

 

Some other papers related to code-mixed data, where machine learning approaches were used, are discussed in 

Table 1 

 

Table 1: Machine learning approaches for code-mixed data. 

 

Reference Task Dataset Feature selection Classifier Accuracy 

Srinivasan et 

al. [17] 

Sentiment 

analysis  

15,744 Tamil-English 

Youtube comments 

Tf-Idf RF, LR, XGBoost, 

SVM and Naïve Bayes 

Achieved 0.81 F1 

score using RF 

Swami et al. 

[18] 

Sentiment 

Analysis of twitter 

data 

31962 code-mixed tweets TF-IDF LR, DT, RF, Naïve 

bayes, SVM 

RF achieved 

maximum accuracy 

96.57%  

Khandelwal 

et al. [19] 

Gender Prediction 4015 tweets Reference Tokens, Top 

Hashtags, Bag-of-

words 

SVM with RBF, 

Random Forest, and 

Naive Bayes classifier. 

SVM model with RBF 

achieved an accuracy 

of 89.5%. 

Bohra et al. 

[20] 

Hate speech 

detection 

4575 code-mixed tweets Character N-Grams, 

Word N-Grams. 

SVM and Random 

Forest 

SVM achieved highest 

accuracy as 71.7% 

Utsav J. 

et.al. [21] 

Stance Detection 3545 Demonetization 

tweets and 4219 article 

370 tweets 

Word N-grams, stance 

indicative tokens, 

character N-grams. 

RF, SVM, XGBoost, 

RBF 

Achieved highest 

accuracy 69.1 % using 

XGBoost 

Vijay et al. 

[22] 

Corpus Creation 

and Emotion 

Prediction 

2698 emotional code-

mixed tweets 

Character N-Grams and 

Word N-Grams (n 

varies from 1 to 3) 

SVM classifier Achieved the best 

accuracy of 58.2% 

using SVM. 

Rahman et 

al. [23] 

Cyberbullying 

Detection 

8400 annotated comments uni-grams, n-grams NB, SVM, XGBoost, 

random forest, 

ensemble model 

Ensemble model 

achieves highest 

accuracy 60.09% 

Mohapatra 

et al. [24] 

Hate Speech 

Detection  

27,162 posts word unigram, bigram, 

TF-IDF, word2vec 

SVM, NB, RF SVM with word2vec 

achieves highest 

accuracy with a 73% 

F1-score 

Mishra et al. 

[25] 

Code-Mixed SA 18461 hinglish sentences TF-IDF and GloVe SVM, Voting 

Classifier, MLP 

Achieved an F1 score 

of 0.569 using voting 

classifier 

 

2.2 Emotion Detection Based on Deep Learning Methods 

 

Deep learning models have become essential in text emotion detection, particularly for code-mixed languages like 

Hinglish, which combines Hindi and English. These models, including RNNs, CNNs, and transformers, 

automatically learn patterns from vast amounts of data, eliminating the need for extensive feature engineering 

required by traditional machine learning methods. This ability allows DL models to capture complex relationships 

and contextual nuances in the text, significantly enhancing the accuracy of emotion detection in informal social 

media language. Models like LSTM networks and transformers such as BERT have performed well in identifying 

emotions in these texts. Even with these advancements, researchers continue to explore hybrid methods that blend 

DL and traditional ML techniques to address the challenges posed by linguistic diversity and informal language on 
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social media. As online communication continues to evolve, deep learning's role in accurately detecting emotions in 

code-mixed Hinglish remains an important area of research. Here, we present an overview of research on code-

mixed text using deep learning techniques- 

 

Thara et al. [26] examines the challenges of processing code-mixed text in social media, focusing on offensive 

language identification and SA in Malayalam-English mixed content. The study explores three key aspects: the 

impact of word embedding methods, the performance of various DL algorithms (including unidirectional, 

bidirectional, hybrid, and transformer models), and the effectiveness of selective translation, transliteration, and 

hyperparameter optimization. The proposed framework achieved impressive F1-scores of 0.76 and 0.99 for the FIRE 

2020 and EACL 2021 datasets, respectively. A thorough error analysis provides valuable insights, and the approach 

outperforms existing benchmarks for Malayalam-English code-mixed messages, contributing to societal benefit 

through improved understanding of multilingual social media content. Ghosh et al. [27] addresses the growing need 

for sentiment and emotion analysis in code-mixed content, particularly focusing on Hindi-English (Hinglish) texts. 

The authors create an emotion-annotated Hinglish dataset by enhancing the existing SentiMix dataset. The authors 

introduce an innovative approach that combines sentiment detection and emotion recognition into a single multitask 

framework. This model is built on transformer architecture and leverages the pre-trained XLMR model. By fine-

tuning XLMR with task-specific data, they leverage transfer learning to enhance overall performance. The multitask 

approach outperforms existing single-task and multitask baselines significantly, demonstrating that emotion 

recognition as an auxiliary task improves sentiment detection in a multitask setting. Notably, these results were 

achieved without ensemble techniques, suggesting a practical and efficient approach for real-world NLP 

applications. Wadhawan et al. [28] concentrate on identifying emotions in social media content written in Hinglish, 

a mix of Hindi and English commonly used in tweets. They introduce a new dataset of Hinglish tweets labeled for 

emotion detection and investigate several DL methods to tackle this challenge. Their approach incorporates bilingual 

word embeddings, along with transformer models. The research evaluates and contrasts the effectiveness of various 

DL architectures, including CNNs, LSTMs, bidirectional LSTMs (with and without attention), and advanced 

transformer models such as BERT, RoBERTa, and ALBERT. Among these, the BERT-based transformer model 

demonstrates superior performance, achieving the highest accuracy of 71.43%. This work contributes to the growing 

field of emotion detection in multilingual social media contexts, which has wide-ranging applications in consumer 

understanding, psychology, human-computer interaction, and smart system design. Das et al. [29] explore SA in the 

context of social media, specifically Hinglish tweets. Their research employs a labeled Hinglish dataset for emotion 

detection and applies various DL techniques. The study utilizes multilingual word embeddings from FastText 

methods and transformer-based models to analyze emotions in these code-mixed tweets. The researchers experiment 

with different DL architectures, including CNN, LSTM, and Bi-LSTM models. CNN model outperforms the others, 

achieving an accuracy of 75.25%. This research contributes valuable insights to the expanding field of multilingual 

SA in social media, with potential applications across diverse domains such as human-computer interaction, 

consumer behavior analysis, psychological studies, and smart system development. Sasidhar et al. [30] focuses on 

emotion analysis in Hinglish text. They developed a dataset comprising 12,000 code-mixed texts gathered from 

various sources, annotating them with three emotion categories: happy, anger, and sad. Their approach utilizes a 

pretrained bilingual model to generate feature vectors, which are then used in deep neural network classifiers. 

Among the various models tested, the CNN-BiLSTM architecture demonstrated superior performance, achieving a 

classification accuracy of 83.21%. This work contributes to the growing field of emotion analysis in multilingual 

contexts, particularly for code-mixed language data. Mursalin et al. [31] tackled the growing challenge of emotion 

detection in Bengali-English code-mixed text, driven by the increasing use of social media among Bengali speakers. 

Their study aimed to classify emotions into various categories. To address the scarcity of resources, they developed 

a corpus of 10,221 Bengali-English code-mixed sentences. The researchers experimented with various word 

embedding techniques, including Word2Vec, FastText, and Keras Embedding Layer, and applied different ML and 

DL algorithms. Through comparative analysis, they found that their proposed method combining Word2Vec and 

BiLSTM outperformed other models, achieving the highest accuracy of 76.1%. This research advances emotion 

recognition in low-resource languages and code-mixed data, with potential applications across diverse fields such as 

e-commerce, healthcare, suicide prevention, and crime detection. Abdullah et al. [32] focuses on emotion detection 

in Roman Urdu (RU) and English (EN) code-mixed text, an area that has received little attention despite its 

prevalence on social media. The study addresses limitations in existing research by creating a new corpus of 20,000 

purely code-mixed sentences from 400,000 social media posts. The researchers developed comprehensive 

annotation guidelines and created the RU-EN-Emotion corpus, annotating sentences as Neutral or Emotion, with 

further emotion classification for the latter. They conducted 102 experiments comparing six classical ML and six DL 

techniques. Results showed that CNN with GloVe embeddings performed best, and their two-level classification 
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approach using the new corpus proved more effective than previous methods. Jyoti et al. [33] focused on SA of 

Dravidian language social media posts, specifically those combining Kannada, Malayalam, or Tamil with English. 

They developed a model using a dense neural network combined with character-level TF-IDF features to categorize 

posts into five sentiment classes. This approach yielded promising results, achieving weighted F1-scores of 0.61, 

0.72, and 0.60 for Kannada-English, Malayalam-English, and Tamil-English posts respectively. Their research 

addresses a significant gap in the field, as most existing work on social media SA has centered on English-language 

content. By tackling the understudied area of Dravidian code-mixed languages, this study makes a valuable 

contribution to expanding the scope of SA in multilingual contexts. Mishra et al. [34] present a comprehensive 

report on the SemEval-2020 Task 9, which focused on SA of code-mixed tweets, also known as SentiMix 2020. 

This task addressed the growing importance of analyzing sentiment in multilingual social media content, particularly 

in code-mixed languages. The researchers developed and introduced two significant new corpora for this task: a 

Hinglish dataset comprising 20,000 tweets, and a Spanglish (Spanish-English) dataset with 19,000 tweets. These 

datasets were meticulously annotated, featuring word-level language identification to distinguish between the mixed 

languages, as well as sentence-level sentiment labels categorized as Positive, Negative, or Neutral. The competition 

garnered substantial interest from the research community, attracting a total of 89 submissions. The Hinglish contest 

saw participation from 61 teams, while the Spanglish contest involved 28 teams, indicating a strong interest in both 

language pairs. The results were promising, with the top-performing systems achieving impressive F1 scores: 75.0% 

for the Hinglish task and 80.6% for the Spanglish task. 

 

Some other papers related to code-mixed data, where deep learning approaches were used, are discussed in Table 2 

 

Table 2: Deep learning approaches for code-mixed data. 

 

Reference Task Dataset Classifier Accuracy 

Joshi et al. [35] SA of Hindi-English 

Text 

3879 sentences Subword-LSTM and 

Char-LSTM 

Subword-LSTM achieved highest 

accuracy 69.7%. 

Shashi Shekhar 

et al. [36] 

Hatred and trolling 

detection system 

Total 5905 social 

media sentences 

HLSTM, SVM, RF HLSTM achieved best 97.49% 

accuracy. 

Singh et al. 

[37] 

Predicting multi-label 

emojis, sentiment and 

emotions. 

20,000 tweets XLMR, mBERT, CM-

RFT 

Best model CM-RFT achieved 

75.81% accuracy for emoji, 

82.35% for sentiment and 63.73% 

for emotion detection. 

Pillai et al. [38] Sentiment and offensive 

text detection. 

50K Tweets Feature fusion + HAN Achieved highest accuracy of 

95.6% 

Younas et al. 

[39] 

SA Dataset contains 

20,735 tweets 

mBERT and XLM-

RoBERTa 

XLM-R achieved better accuracy 

with F1 score of 71%. 

Sane et al. [40] Humor Detection Around 200k 

tweets 

CNN and BiLSTM (with 

and without Attention) 

Attention based BiLSTM model 

achieved an accuracy of 73.6% 

Jadon et al. 

[41] 

SA of Hinglish text 18000 tweets Hybrid LSTM-GRU 

model 

Achieved 96.76% accuracy and 

98.49% Precision. 

Himabindu et 

al. [42] 

Emoji Prediction in 

code-mixed Hinglish 

language. 

HEP dataset 

contains 86,072 

tweets. 

BiLSTM with self-

attention and random 

forest 

Achieved Accuracy: 61.14%, 

Precision: 0.66, Recall: 0.59, F1 

Score: 0.59 

Mursalin et al. 

[43] 

Classifying emotions 

from Bengali-English 

10,221 sentences BiLSTM with 

Word2Vec embedding 

Achieved 76.1% accuracy. 

Yann et al. [44] SA of Malay-English 

mixed language 

7,907 samples of 

Malay-English 

comments 

BiLSTM, LSTM, Naïve 

Bayes, Logistic 

Regression 

biLSTM with tuned hyper-

parameters achieved the highest 

accuracy of 76.6% and a macro 

F1-score of 69.6% 

 

3 Recent Models for Hinglish Text Emotion Detection - Emotion detection in code-mixed Hinglish 

presents unique challenges due to linguistic complexity, informal structure, and the presence of transliterated words. 

Various advance models have been explored to address these challenges effectively, which are shown in Table 3. 
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Table 3: Recent models for text emotion detection 

 

Model Type Examples Characteristics Advantages Limitations 

Transformer-Based 

Models [45] 

XLM-R, 

mBERT, mT5, 

MuRIL, 

HingBERT 

- Context-aware embeddings  

- pre-trained on multilingual 

corpora 

- High accuracy in code-

mixed text  

- Handles Hinglish 

variations well 

- Requires significant 

computational power  

- Needs fine-tuning on 

Hinglish data 

Multimodal Learning 

[46] 

CLIP, MMBERT - Processes text and images/videos  

- Enhances emotion detection via 

multimodal cues 

- Useful for social media 

content  

- Captures richer context 

- Requires labeled 

multimodal datasets  

- Computationally 

expensive 

Contrastive Learning 

[47] 

SimCSE, 

Sentence-BERT, 

mT5 + 

Contrastive Loss 

- Learns better text representations  

- Effective for emotion similarity 

- Improves embedding 

quality  

- Works well with low-

resource languages 

- Needs large positive-

negative sample pairs  

- Longer training time 

Meta-Learning [48] BiLSTM + 

Random Forest,  

- Combines transformer 

embeddings with traditional ML 

classifiers 

- Enhances model 

generalization  

- Improves explainability 

- Complex pipeline  

- Requires fine-tuning 

Prompt-Based Learning 

[49] 

GPT-4, Llama 3, 

Bloom 

- Uses prompts to extract emotions  

- Few-shot learning capabilities 

- Works without fine-tuning  

- Handles Hinglish 

variations naturally 

- High inference cost  

- Requires prompt 

engineering 

Low-Resource 

Adaptation [50] 

LoRA, Adapter 

Layers 

- Reduces number of trainable 

parameters  

- Faster training  

- Requires less data 

- May still need fine-

tuning on Hinglish 

datasets 

Graph Neural Networks 

(GNNs) [51] 

GraphSAGE, 

GAT 

- Captures relational context in 

conversations  

- Effective for emotion flow 

detection 

- Works well with social 

media conversations  

- Learns semantic 

relationships 

- Requires graph 

structure  

- Computationally 

complex 

Reinforcement Learning 

for NLP [52] 

RLHF  - Model fine-tuned using human 

feedback  

- More robust emotion 

detection  

-Computationally 

expensive 

 

4 Proposed Framework 
 

The proposed framework presents an emotion detection pipeline with three key components. The first component is 

data preprocessing, which begins with ADASYN oversampling to balance the dataset. This is followed by text 

cleaning, including tasks such as removing URLs and usernames, converting text to lowercase, eliminating 

stopwords, and applying stemming. The next component, the XLM-R embedding layer, processes the cleaned text 

through its hidden layers to produce weighted embeddings. The architecture then splits into two parts: a BiLSTM 

with multi-head attention and a processing block featuring normalization and ReLU activation. The final 

component, the output block, consists of dropout and dense layers with softmax activation, which predicts the 

probability scores for seven emotion classes. The proposed framework is presented in Figure 1. 
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Figure 1: Proposed framework 

 

4.1 Dataset 

 

We used Task 9 of the SemEval 2020 shared task dataset, which is separated into three distinct subsets: training, 

testing, and validation, consisting of 14,000, 3,000, and 3,000 tweets, respectively [53]. On average, the sentence 

length is 134.9 characters. In the training set, the average sentence length is 136.9 characters, with a vocabulary size 

of 60,115. The validation set has an average sentence length of 127.7 characters and a vocabulary size of 19,499. 

Meanwhile, the test set's average sentence length is 129.9 characters, with a vocabulary size of 19,331 words. 

The classification of various emotions in the dataset is presented in Table 4. 

 

Table 4: Emotion distribution  

Emotion Train Test Validation 

Anger 2095(14.96%) 680(22.67%) 415(13.83%) 

Disgust 1048(7.49%) 105(3.5%) 148(4.93%) 

Fear 56(0.4%) 13(0.43%) 4(0.13%) 

Joy 3893(27.81%) 1008(33.6%) 973(32.43%) 

Sadness 856(6.11%) 122(4.07%) 307(10.23%) 

Surprise 51(0.36%) 7(0.23%) 6(0.2%) 

Others 6001(42.86%) 1065(35.5%) 1048(34.93%) 

Total 14000 3000 3000 

 

4.2 Data Balancing 

 

The training dataset contains 14,000 instances and includes seven classes: Anger, Joy, Disgust, Sadness, Fear, 

Surprise and Others. The resulting dataset was highly imbalanced, with 6,001 tweets in the 'Others' class and only 56 

and 51 tweets in the 'Fear' and 'Surprise' classes, respectively. To address this imbalance, we employed ADACYN 

oversampling technique [54].  

 

The total number of synthetic samples required for a minority class 𝑐 is: 

𝐺𝑐 = 𝛼(𝑁𝑚𝑎𝑥 − 𝑁𝑐)     (25) 
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Where 𝐺𝑐 is the total number of synthetic samples for class 𝑐, 𝛼 is a user-defined sampling intensity factor, 𝑁𝑚𝑎𝑥  is 

the number of instances in the majority class and 𝑁𝑐   is the number of instances in the minority class. 

 

For each minority instance 𝑋𝑖, a synthetic sample is generated by selecting a random minority neighbor 𝑋𝑗- 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝜇. (𝑋𝑗 − 𝑋𝑖)     (26) 

 

Where 𝜇 ~ 𝑈(0,1) is a random number drawn from a uniform distribution. The balance dataset is shown in table 5. 

 

Table 5: Emotion distribution after balancing train dataset 

 

Class Anger  Joy  Disgust  Sadness  Fear  Surprise  Others Total  

Number of 

instances 

5452 6114 5941 5985 5977 6021 6001 41491 

 

After balancing the training dataset, the resulting balanced dataset is shown in Figure 2. 

 

Figure 2: Balanced dataset 

 

4.3 Data Preprocessing 

 

Our dataset is almost evenly distributed. Next, we move on to the data preprocessing phase. During this stage, we 

implement several techniques, including the removal of URLs, usernames, and the "#" symbol from tweets, 

converting text to lowercase, reducing consecutive characters, eliminating Hinglish Stopwords, addressing 

negations, removing all punctuation marks, and applying stemming[55].  

The raw input text 𝒟 is split into a sequence of tokens using a tokenization function 𝛵 

𝕋 = 𝛵(𝒟) = 𝑤1, 𝑤2, … . 𝑤𝑁      (27) 

Where 𝒟  is the input document, 𝛵  is the tokenization function and 𝕋  is the tokenized sequence consisting of 

𝑁 tokens. 

A filtering function ₣ removes unwanted symbols, numbers, and links: 

𝕋′ = ₣(𝕋) = {𝑤𝑖|𝑤𝑖 ∉ 𝛺,𝑤𝑖 ∉ ℝ+, 𝑤𝑖 ∉ 𝕌,𝑤𝑖 ∉ 𝕄}    (28) 

Where 𝛺 is the set of punctuation and special characters, ℝ+ represents numerical tokens, 𝕌 represents URLs, 𝕄 

represents mentions and 𝕋′ is the cleaned token sequence. 

To reduce noise, stopwords   𝕋′′ = {𝑤𝑖|𝑤𝑖 ∉ 𝕊}      (29) 

Where 𝕊 is the predefined Stopword set, 𝕋′′ is the token sequence after Stopword removal. 

Then, a transformation function £ converts all tokens to lowercase: 𝕋′′′ = £(𝕋′′)    (30) 

To normalize tokens into their root forms, lemmatization ℓ is applied-  𝕋∗ = ℓ(𝕋′′′)    (31) 

Where ℓ applies lemmatization and   𝕋∗ is the final preprocessed token sequence. 
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The final preprocessed text is converted into a numerical vector representation Χ 

Χ = ϕ(𝕋∗) ∈ ℝ𝑑       (32) 

Where ϕ is the feature extraction function and Χ is the numerical representation of the text. 

The complete text preprocessing pipeline is mathematically represented as: 

Χ = ϕ(ℓ (£ (₣(𝛵(𝒟)))))      (33) 

 

4.4 XLMR Embedding Layer 

 

XLM-R is a multilingual transformer-based model designed to handle multiple languages and trained on a large 

amount of multilingual data. It is particularly suitable for code-mixed data (like Hinglish) due to its ability to capture 

linguistic patterns across languages. The model generates embeddings by processing input text through multiple 

hidden layers (transformer layers) that capture complex semantic and syntactic information from the text. Each 

hidden layer in XLM-R captures different levels of linguistic information. Early layers focus on basic linguistic 

structures, while deeper layers capture more complex and abstract information. Instead of using just one hidden 

layer’s output, a weighted sum technique is applied across all layers. This means each hidden layer’s output is 

assigned a specific weight, and these weighted outputs are summed together to form a final embedding. Weighting 

layers allows the model to dynamically emphasize layers that provide the most relevant features for emotion 

detection in Hinglish text. The result of the weighted sum operation is a single embedding vector, referred to as 

Weighted XLM-R Embeddings. This vector is contextually rich and tailored to the input text's structure and 

semantics, containing information relevant to both languages (English and Hindi). These embeddings are then 

passed to subsequent layers (BiLSTM and attention layers) for further processing and classification into specific 

emotions. The XLM-R embedding layer block generates contextual embeddings for code-mixed Hinglish tweets by 

using a weighted sum of hidden layers from the pretrained XLM-R model. These weighted layers are then summed 

to create a robust composite embedding. 

These equations mathematically represent how the XLM-R embedding layer generates robust contextual 

embeddings using a weighted sum technique. 

Let the input text 𝑇 = {𝑡1, 𝑡2, …… , 𝑡𝑛}  where 𝑛  is the number of tokens after tokenization using the XLM-R 

tokenizer. The model processes 𝑇 through 𝐿 transformer layers, and the hidden state at layer 𝑙 is represented as: 

𝐻(𝑙) = {ℎ1
(𝑙), ℎ2

(𝑙), …… , ℎ𝑛
(𝑙)}, 𝑙 ∈ {1,2, … . . , 𝐿}   (34) 

Where 𝐻(𝑙)  ∈  ℝ𝑛𝑋𝑑 and 𝑑 is the embedding dimension of the hidden states. 

To emphasize the most relevant layers for the task, we assign a learnable scalar weight 𝛼(𝑙) to each hidden layer 𝑙. 
These weights are normalized using the softmax function: 

 𝛼(𝑙) =
exp (𝛽(𝑙))

∑ exp (𝛽(𝑗)𝐿
𝑗=1

 , 𝑙 ∈ {1,2, … . . , 𝐿}     (35)  

Where  𝛽(𝑙) are the learnable parameters associated with each layer. 

The weighted sum of hidden states across all 𝐿 layers produce the final contextual embedding vector for the input 

sequence: 

𝐸𝑋𝐿𝑀𝑅 = ∑  𝛼(𝑙).𝐿
𝑙=1 𝐻(𝑙)       (36) 

Where 𝐸𝑋𝐿𝑀𝑅 ∈ ℝ𝑛𝑋𝑑  

To represent the entire input sequence as a single embedding vector 𝑒𝑋𝐿𝑀𝑅, we apply a pooling operation over the 

token embeddings: 

𝑒𝑋𝐿𝑀𝑅 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝐸𝑋𝐿𝑀𝑅 )      (37) 

Where 𝑒𝑋𝐿𝑀𝑅 ∈ ℝ𝑑 is the final sequence-level embedding.  

The final embedding 𝑒𝑋𝐿𝑀𝑅  is rich in contextual information, as it combines linguistic structures from multiple 

layers, emphasizing task-specific relevance through the learned weights 𝛼(𝑙). This embedding is further processed 

by downstream layers (BiLSTM with attention) for classification into emotion categories.  

Figure 3 shows XLM-R architecture processing flow, starting with Hinglish text input, passing through tokenization, 

embedding, and position encoding. The tokens are processed through layers for syntactic, semantic, and contextual 

features, incorporating Self Attention, Feed Forward, and Normalize operations. The weighted XLMR embeddings 

are then input into a BiLSTM with an Attention Layer for final processing. 
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Figure 3: XLMR processing pipeline 

 

4.5 BiLSTM with Multihead Attention 

 

In the BiLSTM with Multihead Attention block, we refine the XLM-R embeddings by combining sequential 

modeling with attention mechanisms to better capture emotional cues in code-mixed Hinglish tweets. First, we pass 

the embeddings through a BiLSTM layer, which processes them in both forward and backward directions, enabling 

the model to learn context from the entire sequence and create richer representations of each token. To improve 

stability and training efficiency, we apply Layer Normalization to the BiLSTM outputs. Next, we use a Multihead 

Attention layer with several attention heads, allowing the model to focus on multiple relationships between tokens 

across the sequence and capture both local and global dependencies. We add a dropout layer to reduce overfitting, 

and finally, a fully connected layer maps the processed information to the emotion classes, enabling the model to 

make accurate predictions. 

The input to the BiLSTM model is the embedding matrix obtained from XLM-R, denoted as: 

𝐸 = {𝑒1, 𝑒2, 𝑒3, …… . 𝑒𝑇}       (38) 

Where 𝑇 is the sequence length and 𝑒𝑡 ∈  ℝ𝑑 , 𝑡 = {1,2,3, … . . , 𝑇} 
The BiLSTM processes the input embeddings in both forward and backward directions: 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀𝑓𝑤𝑑(𝑒𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )       (39) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀𝑏𝑤𝑑(𝑒𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)       (40) 

The concatenated output of the BiLSTM is: 

𝐻 = {ℎ1, ℎ2, ℎ3, ……… . ℎ𝑇}, ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ ]    (41) 

To stabilize training, layer normalization is applied to the BiLSTM outputs: 

𝐻𝑛𝑜𝑟𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻)      (42) 

The Multihead Attention mechanism computes attention scores for ℎ heads. Each head computes scaled dot-product 

attention: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)V     (43) 

Where 𝑄,𝐾 𝑎𝑛𝑑 𝑉 are the query, key, and value matrices derived from 𝐻𝑛𝑜𝑟𝑚 and 𝑑𝑘 is the dimensionality of the 

keys. 

The outputs of all heads are concatenated and passed through a dense layer: 

𝐴 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ℎ𝑒𝑎𝑑2, ……… , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜    (44) 

Where 𝑊𝑜 is a learnable weight matrix. 

Dropout is applied to the Multihead Attention output: 

𝐴𝑑𝑟𝑜𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐴)       (45) 

Finally, a fully connected layer maps the processed sequence representation to the emotion classes: 
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𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐴𝑑𝑟𝑜𝑝𝑊 + 𝑏)      (46) 

Where 𝑊 and 𝑏 are the weights and biases of the fully connected layer, and 𝑦 is the output probability distribution 

over the emotion classes. 

 

4.6 Processing Block 

 

The Processing Block is a crucial component in our architecture designed to manage and transform the input data 

into a format suitable for model training and inference. This block performs several preprocessing steps that prepare 

raw textual data, including tokenization, padding, and batch formation, before feeding it into the embedding and 

subsequent model layers. The first step in the Processing Block is tokenization, which involves converting the code-

mixed Hinglish tweets into a sequence of tokens that the XLM-R model can interpret. Here, we use the XLM-R 

tokenizer, which breaks down each tweet into sub-word tokens and assigns each a unique identifier. Additionally, 

special tokens like [CLS] (indicating the start of the sentence) and [SEP] (denoting the end) are added to each tweet 

to mark sentence boundaries. Tweets in the dataset can vary significantly in length. To ensure that each tweet is 

represented as a fixed-length sequence, the Processing Block applies padding and truncation. Alongside 

tokenization, attention masks are generated to indicate which tokens should be attended to during processing. 

Tokens representing actual words have a mask value of 1, while padding tokens are marked as 0. This helps the 

model to focus only on meaningful tokens and ignore padded elements during attention-based computations. After 

tokenization, padding, and mask creation, the data is split into batches for efficient model training. Batching allows 

multiple tweets to be processed simultaneously, accelerating training and optimizing GPU utilization. For each 

batch, the tokenized inputs, attention masks, and corresponding labels (emotion classes) are grouped together. The 

tokenized and formatted data is then passed to a DataLoader for efficient handling during training and evaluation. 

The DataLoader shuffles the data, creating batches with uniform dimensions, and ensures smooth data flow to the 

model. 

Each tweet 𝑇 = {𝑇1, 𝑇2, ……… , 𝑇𝑁) is tokenized using the XLM-R tokenizer into a sequence of sub-word tokens: 

𝑇𝑡 = {[𝐶𝐿𝑆], 𝑒1𝑒2, …… . . 𝑒𝑛𝑡
, [𝑆𝐸𝑃]}, 𝑡 = 1,2, … . , 𝑁     (47) 

Where 𝑁 is the total number of tweets, 𝑛𝑡 is the number of tokens in tweet 𝑇𝑡 and [𝐶𝐿𝑆], [𝑆𝐸𝑃] are special tokens 

marking the beginning and end of the sequence, respectively. 

To standardize input dimensions, all tokenized sequences are either padded or truncated to a fixed length 𝐿: 

𝑇𝑡
𝑝𝑎𝑑𝑑𝑒𝑑

= {
{[𝐶𝐿𝑆], 𝑒1𝑒2, …… . . 𝑒𝑛𝑡

, [𝑆𝐸𝑃], 0,0,0, … . .0}  𝑛𝑡 < 𝐿

{[𝐶𝐿𝑆], 𝑒1𝑒2, …… . . 𝑒𝐿−2, [𝑆𝐸𝑃]}  𝑛𝑡 ≥ 𝐿
}   (48) 

Where 0 represents the padding token. 

Attention masks 𝑀𝑡 are generated for each padded sequence to indicate which tokens should be attended to during 

computations: 

𝑀𝑡 = {𝑚1𝑚2, …… . .𝑚𝐿},𝑚𝑖 = {
1, 𝑖𝑓 𝑡𝑜𝑘𝑒𝑛 𝑒𝑖 ≠ 0

  0, 𝑖𝑓 𝑡𝑜𝑘𝑒𝑛 𝑒𝑖 = 0  
    (49) 

 The tokenized, padded sequences, attention masks, and emotion labels 𝑦𝑡  are grouped into batches for efficient 

processing: 

𝐵𝑎𝑡𝑐ℎ𝑘 = {(𝑇𝑡
𝑝𝑎𝑑𝑑𝑒𝑑

 , 𝑀𝑡 , 𝑦𝑡) | 𝑡 ∈ 𝛿𝑘} 𝑘 = 1,2, …… . . , 𝐵    (50) 

Where 𝛿𝑘 represents the indices of tweets in the 𝑘 batch and 𝐵 is the total number of batches. 

The DataLoader organizes batches into the dataset for training and inference: 

𝜆 = {𝐵𝑎𝑡𝑐ℎ1𝐵𝑎𝑡𝑐ℎ2𝐵𝑎𝑡𝑐ℎ3, …… . 𝐵𝑎𝑡𝑐ℎϐ}      (51) 

 

4.7 Output Block 

 

The output block is the final part of our emotion detection system that determines the emotional class of the input. 

Starting with a dropout layer that prevents overfitting by dropping random neurons, the data then passes through a 

dense layer with softmax activation. This layer transforms the input into probability scores between 0 and 1 for each 

emotion category, with all scores summing to 1. For example, given a text input, the model computes probability 

scores like P(joy) = 0.75, P(surprise) = 0.15, P(anger) = 0.05, and so on. The emotion with the highest probability 

score becomes the final prediction - so in this case, the model would classify the text as expressing "joy" since it has 

the highest probability of 0.75. These probability scores not only provide the final classification but also indicate the 

model's confidence in its prediction. The model covers seven emotion categories: anger, joy, disgust, sadness, fear, 

surprise, and others, where "others" captures emotional expressions that don't clearly fit into the main categories. 
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Figure 4 shows the complete data preprocessing and model prediction pipeline for code-mixed Hinglish tweets. The 

process begins with input tweets passing through a Processing Block, where the XLM-R tokenizer processes the 

text, adds special tokens, and converts them into token IDs. The next step is the Padding & Truncation block, which 

adjusts text length by padding shorter texts and truncating longer ones based on a defined maximum length. An 

Attention Mask is then created, marking actual tokens as 1 and padding tokens as 0. During the Batch Formation 

stage, inputs, masks, and labels are grouped together into a data loader. Finally, the Output Block processes the data 

through dropout and dense layers, applying softmax activation to generate emotion probabilities. 

 
Figure 4: Model prediction pipeline 

 

Finally, the Probability Distribution   𝑃(𝑦 = 𝑐|𝑥) =
exp(𝑜𝑐 )

∑ exp(𝑜𝑗 )
𝑘
𝑗=1

 , 𝑐 ∈ {1,2, … , 𝑘}    (52) 

Where 𝑃(𝑦 = 𝑐|𝑥) represents the probability of the input tweet 𝑥 belonging to class 𝑐. 

Final prediction-     𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑐 ∈ 1,2, , … . 𝑘) 𝑃(𝑦 = 𝑐|𝑥)   (53) 

Where 𝑐∗ is the predicted emotion class. 

Algorithm 1 summarizes the key steps of our proposed framework.  

Algorithm 1: Emotion Detection (XLM-R + BiLSTM-Attention) 

 

1. Dataset 𝐷 = {(𝑇1, 𝑦1), (𝑇2, 𝑦2) … . (𝑇𝑛, 𝑦𝑛)} where 𝑇𝑖 is the tweet and 𝑦𝑖  is the corresponding emotion 

label. 

2. Initialize: Pre-trained XLM-R model 𝑀𝑋𝐿𝑀𝑅 with parameters 𝜃𝑋𝐿𝑀𝑅 

3. BiLSTM parameters {𝑊𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑊𝑏𝑖𝑎𝑠𝑒𝑠} attention heads ℎ and hyperparameters, {𝜇, 𝜐, 𝜆𝑒𝑝𝑜𝑐ℎ𝑠} 

(𝜇 is the learning rate, 𝜐 is the batch size and 𝜆𝑒𝑝𝑜𝑐ℎ𝑠 is the maximum number of epochs) 

4. Define emotion classes 𝑐 = {𝑎𝑛𝑔𝑒𝑟, 𝑗𝑜𝑦, 𝑑𝑖𝑠𝑔𝑢𝑠𝑡, 𝑠𝑎𝑑, 𝑓𝑒𝑎𝑟, 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑠} 
5. Training Loop: For each epoch 𝑒 = 1 𝑡𝑜 𝜆𝑒𝑝𝑜𝑐ℎ𝑠 

6. For each batch 𝐵𝑗 ⊆ 𝐷: 

• Preprocess tweet 𝑇𝑖 ∈ 𝐵𝑗 using function 𝑓(𝑇𝑖) = 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑐𝑙𝑒𝑎𝑛(𝑇𝑖)) 

• Extract XLM-R embeddings:  𝐸𝑗 = 𝑀𝑋𝐿𝑀𝑅(𝐵𝑗 ) 

• Compute weighted feature vectors: 𝑊𝑗 = ∑ 𝑊𝑖
𝜐
𝑖=1 . 𝐸𝑖 

• Apply BiLSTM to weighted features:  𝐻𝑗 = 𝐵𝐼𝐿𝑆𝑇𝑀(𝑊𝑗 ) 

• Apply multi-head attention:  𝐴𝑗 = 𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻𝑗 , ℎ) 

• Normalize the output:  𝑁𝑗 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐴𝑗 ) 

• Apply dropout regularization:  𝐷𝑗 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑁𝑗 ) 

• Compute logits:  𝐿𝑗 = 𝐷𝑒𝑛𝑠𝑒(𝐷𝑗 , 𝑠𝑜𝑓𝑡𝑚𝑎𝑥) 

• Calculate cross-entropy loss:𝐿 = 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑙𝑜𝑠𝑠(𝐿𝑗 , 𝑦𝑗) 

• Update parameters 𝜃𝑋𝐿𝑀𝑅, 𝑊𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑊𝑏𝑖𝑎𝑠𝑒𝑠  using gradient descent: 

𝜃𝑋𝐿𝑀𝑅,𝑊𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ,𝑊𝑏𝑖𝑎𝑠𝑒𝑠 ← 𝜃𝑋𝐿𝑀𝑅,𝑊𝑤𝑒𝑖𝑔ℎ𝑡𝑠,𝑊𝑏𝑖𝑎𝑠𝑒𝑠 − 𝜇. ∇L  

7. Evaluate the model on the validation set  𝐷𝑣𝑎𝑙  after each epoch. 

8. Return: Trained model  𝑀𝑓𝑖𝑛𝑎𝑙 

9. Evaluate  𝑀𝑓𝑖𝑛𝑎𝑙 on the test set  𝐷𝑡𝑒𝑠𝑡 

10. Output predictions 𝑦𝑖̂ , accuracy  𝜃𝑎𝑐𝑐 , precision  𝛼𝑝𝑟𝑒 , recall  𝛽𝑟𝑒𝑐  F1 score  𝜑𝐹1 
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5 Experimental Section  
 

The experimental setup operates on a Windows 10 system with an Intel Core i7-8700K CPU and an NVIDIA 

GeForce GTX 1080 GPU. The software environment comprises Anaconda3 and Python 1.7.0. Model training is 

optimized using the Adam optimizer with cross-entropy as the loss function. Table 6 provides detailed parameter 

settings. 

Table 6: Model Parameters 

 

Parameters Description Values (During 

Grid Search) 

Best Value (After 

Grid Search) 

hidden_dim The size of the hidden state in the LSTM layer. [128, 256, 512, 1024] 256 

lstm_layers Number of layers in the LSTM. [1, 2, 3] 2 

attention_heads The count of attention heads in the multi-head attention layer [2, 4, 8] 4 

dropout_rate Dropout rate for regularization. [0.1, 0.2, 0.3, 0.4] 0.2 

batch_size Batch size used in the DataLoader for training and evaluation. [16, 32, 64, 128] 32 

learning_rate Learning rate for the optimizer. [1e-5, 1e-4, 1e-3] 1e-4 

num_epochs Number of epochs for training the model.  10 

 

6 Result and Discussion 

 

We compared our proposed model with mainstream text classification models, including XLMR [9], mBERT [10], 

IndicBERT [56], Mistral 7B [57], MURIL [58], and mT5 [59]. Four metrics are used to evaluate the classification 

performance: accuracy, precision, recall, and F1 score [60]. Table 7 presents the comparison results across various 

models. 

Table 7: Model performance comparison 

 

Model Accuracy Precision Recall F1 Score 

XLMR[9] 66.40% 68.71% 64.40% 67.50% 

mBERT[10] 60.03% 62.06% 60.03% 61.92% 

IndicBERT[61] 64.83% 66.35% 65.83% 65.40% 

Mistral 7B[57] 77.45% 74.56% 72.12% 78.36% 

MURIL[58] 63.37% 65.43% 64.37% 65.22% 

mT5 [59] 26.03% 49.22% 26.03% 32.69% 

Proposed Model 87.50% 88.28% 87.19% 87.77% 

 

The table shows that the proposed model achieved the highest F1 score of 83.51%, while Mistral 7B achieved 

78.36%. Confusion matrix[62] of proposed model is shown in figure 5. 
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Figure 5: Confusion matrix 

Accuracy and Loss graph for training and test data is shown in figure 6.  

 

Figure 6: Accuracy and loss graph 

Figure 7 shows a detailed comparison graph showcasing the performance of the different models. This graph shows 

how each model performed, helping to understand their effectiveness and suitability for the task. 
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Figure 7: Comparison graph 

6.1 Ablation study- To evaluate the contribution of each architectural component in our proposed model, we 

conducted an ablation study by systematically removing or modifying individual parts of the model while keeping 

other settings constant. The goal was to assess how each design choice affects the final performance on emotion 

detection in code-mixed Hinglish text. 

 

We started with a baseline model using only the final layer of XLM-RoBERTa for classification and gradually 

added components such as BiLSTM, multi-head attention, weighted hidden layer aggregation, and hyperparameter 

tuning. 

 

Table 8 presents an ablation study evaluating the contribution of each architectural component to overall 

performance. Starting with a baseline model using only the final layer of XLM-R, we gradually add proposed 

components and observe consistent improvements in both accuracy and F1 score. The most significant gains come 

from incorporating multi-head attention and weighted hidden layer aggregation, highlighting their effectiveness in 

capturing emotion cues in code-mixed text. Finally, hyperparameter tuning further boosts performance to our best 

result of 83.51% F1 score, validating the value of each enhancement. 

Table 8: Ablation study 

 

Model variant Description  Accuracy  Precision  Recall  F1 score 

Baseline (XLM-R 

Only) 

Use only the last layer output 

from XLM-RoBERTa 

80.40% 78% 79% 78% 

+ Weighted sum of 

Hidden Layers 

Learn importance of 

intermediate XLM-R layers 

82.5% 80.43% 81.55% 80.34% 

+ BiLSTM Add Bidirectional LSTM 

over XLM-R outputs 

84.59% 82.23% 83.67% 82.22% 

+ Multi-head 

Attention 

Apply attention to BiLSTM 

outputs 

85.75% 85.15% 84% 84.90% 

+ Hyperparameter 

Tuning 

Optimized learning rate, 

dropout, batch size 

87.51% 88.28% 87.19% 87.77% 

 

From the results, it's evident that each component contributes positively to the final performance:  

Weighted hidden layer aggregation provides the most notable gain, increasing accuracy to 82.5%, demonstrating the 

effectiveness of dynamically learning which layers contribute most to emotion detection. 
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Adding BiLSTM improves contextual modeling and boosts accuracy score to 84.59%, indicating the benefit of 

sequential modeling. 

 

Multi-head attention further enhances performance to 85.75%, highlighting its ability to focus on emotionally 

significant tokens in code-mixed text. 

Finally, hyperparameter tuning leads to the best result of 87.51%, validating the overall value of each enhancement. 

These findings confirm that the proposed design choices are not arbitrary but play a meaningful role in improving 

emotion classification accuracy in complex, multilingual Hinglish texts. 

 

6.2 Error Analysis- To gain deeper insights into the model’s behavior, we conducted a qualitative error analysis, 

focusing on misclassified samples from the test set. Our goal was to understand: 

• Why certain tweets were misclassified 

• What linguistic characteristics made them challenging 

• How our model could be improved based on these findings 

We selected a randomly chosen misclassified instances and analyzed them manually. The following patterns 

emerged as common sources of confusion: 

a) Ambiguous Emotion Labels- A few cases lacked clear emotional cues, leading to ambiguous labeling 

even for humans, which affected model performance. 

b) Class-wise Confusion Insights- From the confusion matrix, we observed the following key 

misclassification trends: 

Predicted vs True Anger  Joy  Disgust  Sadness  Fear  Surprise  Others  

Anger - ↑ ↔ ↑ ↔ ↔ ↑ 

Joy ↑ - ↑ ↑↑ ↔ ↑ ↑ 

Disgust ↓ ↑ - ↓ ↔ ↔ ↑ 

Sadness ↑ ↑ ↑ - ↑ ↑ ↑ 

Fear ↔ ↑ ↔ ↑ - ↑ ↑ 

Surprise ↔ ↑ ↑ ↑ ↑ - ↑ 

Others  ↓ ↓ ↓ ↓ ↓ ↓ - 

 

Where ↑↑= high confusion, ↑=Moderate confusion, ↔=Mild/occasional confusion, ↓=Often misclassified as this 

class and -=True class (diagonal) 

c) Linguistic Characteristics of Difficult Samples- We categorized misclassified samples by linguistic 

features, identifying several contributing factors: 

Feature Description Impact on model 

Transliteration Errors boleto→bola tha Reduced accuracy due to inconsistent 

tokenization 

Informal Spelling  

Accha →Achha 

Affected embedding quality 

Switching Between 

Hindi and English 

Verbs 

She helped me but main confuse tha (English 

verbs helped, karne, Hindi verb tha) 

Confused syntactic parsing 

Informal Spelling 

Variants 

Non-standard spellings and phonetic transliterations 

(e.g., "msg" for message, "aap kesi ho?" instead of 

"aap kaise ho?"). 

Increases ambiguity and reduces model 

accuracy due to inconsistent input 

representations. 

Lack of Standardization No consistent spelling, grammar, or structure Makes preprocessing and modeling 

highly challenging 

Politeness Markers Use of expressions like "plz", "aap", "ji" Nuanced cues may be ignored by 

models unaware of politeness levels 
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7 Conclusion and Future Work 

 

This study proposed a deep learning framework for emotion classification in code-mixed Hinglish text, leveraging 

XLM-R embeddings and a BiLSTM model enhanced with a multi-head attention mechanism. The inclusion of a 

Weighted XLM-R Embeddings layer allowed for optimized feature extraction, while the BiLSTM-Attention 

architecture, equipped with layer normalization and dropout, contributed to improved generalization and 

performance. Extensive experimentation, including hyperparameter tuning through grid search, demonstrated the 

robustness of our approach, achieving a notable accuracy of 87.50%. The results validate the proposed 

methodology's effectiveness in addressing the challenges of emotion detection in code-mixed Hinglish text, offering 

a promising solution for multilingual text. 

 

While the proposed model demonstrates strong performance, there is room for further improvement. Future research 

could explore the integration of other transformer-based embeddings such as mT5 or Mistral to enhance feature 

representation further. Incorporating transfer learning with larger and more diverse datasets could improve the 

model's ability to adapt to real-world scenarios. Additionally, expanding the study to include multimodal data, such 

as images or audio alongside text, could offer deeper insights into emotions. Advanced optimization techniques, 

such as Hyperband or Bayesian optimization, can be applied for more efficient hyperparameter tuning. Finally, 

deploying the model in real-world applications like social media monitoring or sentiment analysis pipelines will 

allow for practical evaluation and further refinements based on user feedback and performance in diverse settings. 
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